Foretelle API
Integrate powerful AI-driven forecasting capabilities directly into your applications with our comprehensive REST API and developer tools.
Powerful Forecasting for Developers
Seamlessly integrate Foretelle's advanced forecasting with your existing systems
Easy Integration
RESTful API design with comprehensive documentation, SDKs, and code examples to get your integration up and running quickly.
Flexible Models
Multiple forecasting models optimized for different use cases, data patterns, and time horizons.
Rich Responses
Comprehensive results including forecast values, confidence intervals, driving factors, and natural language explanations.
High Performance
Optimized for fast response times with global edge deployment and robust caching strategies.
Enterprise Security
Industry-leading security with TLS encryption, API key authentication, and optional custom security configurations.
Multi-platform
Official SDKs available for JavaScript, Python, Java, Ruby, PHP, and more with excellent community support.
Getting Started
Follow these simple steps to start integrating Foretelle in your application
Create an account
Generate API Key
Example API Key:
Your API keys carry many privileges, so be sure to keep them secure! Do not share your API keys in publicly accessible areas such as GitHub, client-side code, or in your application.
Make Your First API Call
curl -X POST https://api.foretelle.com/v1/forecasts \ -H "Authorization: Bearer ft_live_WsRSHD8smVYujbH9tnxHwqza7KtNJcgLMfP6kXZ2" \ -H "Content-Type: application/json" \ -d '{ "data": [ {"date": "2024-01-01", "value": 120}, {"date": "2024-02-01", "value": 135}, {"date": "2024-03-01", "value": 142}, {"date": "2024-04-01", "value": 156}, {"date": "2024-05-01", "value": 170} ], "forecast_horizon": 3, "confidence_level": 0.95, "include_explanation": true }'
API Reference
Comprehensive documentation for all available endpoints
Generate forecasts based on historical time series data with optional configurations for model type, horizons, and confidence intervals.
Request Parameters
Parameter | Type | Required | Description |
---|---|---|---|
data | Array | Yes | Array of objects with date and value properties representing historical data points |
forecast_horizon | Integer | Yes | Number of periods to forecast into the future |
confidence_level | Float | No | Confidence level for prediction intervals (0.0-1.0, default: 0.95) |
model_type | String | No | Forecasting model to use (options: "auto", "arima", "prophet", "neural", default: "auto") |
include_explanation | Boolean | No | Whether to include natural language explanation of forecast (default: false) |
{ "data": [ {"date": "2024-01-01", "value": 120}, {"date": "2024-02-01", "value": 135}, {"date": "2024-03-01", "value": 142}, {"date": "2024-04-01", "value": 156}, {"date": "2024-05-01", "value": 170} ], "forecast_horizon": 3, "confidence_level": 0.95, "model_type": "auto", "include_explanation": true }
{ "success": true, "request_id": "req_7a9b8c7d6e5f4a3b2c1d", "forecast": { "values": [ {"date": "2024-06-01", "value": 184.2}, {"date": "2024-07-01", "value": 197.8}, {"date": "2024-08-01", "value": 210.3} ], "confidence_intervals": [ { "date": "2024-06-01", "lower": 172.6, "upper": 195.8 }, { "date": "2024-07-01", "lower": 182.3, "upper": 213.4 }, { "date": "2024-08-01", "lower": 190.1, "upper": 230.5 } ], "model_used": "prophet", "accuracy_metrics": { "mape": 2.8, "rmse": 4.2 }, "driving_factors": [ { "name": "trend", "contribution": 0.75, "description": "Upward linear trend" }, { "name": "seasonality", "contribution": 0.25, "description": "Monthly pattern detected" } ], "explanation": "This forecast shows a strong upward trend with approximately 7.2% growth per month. The trend accounts for 75% of the predicted increase, while seasonal patterns contribute the remaining 25%. Based on historical data patterns, we predict continued strong growth through August with high confidence (95% confidence interval)." } }
Generate multiple forecast scenarios based on different assumptions and parameters.
Request Parameters
Parameter | Type | Required | Description |
---|---|---|---|
data | Array | Yes | Array of objects with date and value properties representing historical data points |
forecast_horizon | Integer | Yes | Number of periods to forecast into the future |
scenarios | Object | Yes | Configuration for different scenarios (base, optimistic, pessimistic) |
include_explanation | Boolean | No | Whether to include natural language explanation for each scenario (default: false) |
{ "data": [ {"date": "2024-01-01", "value": 120}, {"date": "2024-02-01", "value": 135}, {"date": "2024-03-01", "value": 142}, {"date": "2024-04-01", "value": 156}, {"date": "2024-05-01", "value": 170} ], "forecast_horizon": 3, "scenarios": { "base": { "growth_adjustment": 1.0 }, "optimistic": { "growth_adjustment": 1.2 }, "pessimistic": { "growth_adjustment": 0.8 } }, "include_explanation": true }
Generate forecasts incorporating multiple data variables and external factors.
Request Parameters
Parameter | Type | Required | Description |
---|---|---|---|
target_variable | Object | Yes | Configuration and historical data for the target variable to forecast |
explanatory_variables | Array | Yes | Array of variables that may influence the target variable |
forecast_horizon | Integer | Yes | Number of periods to forecast into the future |
advanced_options | Object | No | Additional configuration options for the multivariate model |
Retrieve a previously generated forecast by its ID.
Request Parameters
Parameter | Type | Required | Description |
---|---|---|---|
forecast_id | String | Yes | Unique identifier for the forecast |
List all available forecasting models and their capabilities.
Evaluate different forecasting models on your data to determine the best fit.
Request Parameters
Parameter | Type | Required | Description |
---|---|---|---|
data | Array | Yes | Array of objects with date and value properties representing historical data points |
models_to_evaluate | Array | No | Array of model types to evaluate (default: evaluates all available models) |
evaluation_method | String | No | Method to use for evaluation (options: "holdout", "cross-validation", default: "holdout") |
Detect anomalies and outliers in historical time series data.
Request Parameters
Parameter | Type | Required | Description |
---|---|---|---|
data | Array | Yes | Array of objects with date and value properties representing historical data points |
sensitivity | Float | No | Threshold for anomaly detection (0.0-1.0, default: 0.95) |
include_explanation | Boolean | No | Whether to include natural language explanation for detected anomalies (default: false) |
Ready to Transform Your Forecasting?
Start integrating Foretelle's powerful AI forecasting capabilities into your applications today.
Create Your API Key